Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 85(20): 827-849, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35815836

RESUMEN

Cecropia pachystachya Tréc., popularly known as embaúba, belongs to the Cecropiaceae family and is used by the native population in the treatment of bronchitis, asthma, high blood pressure, fever, and as a diuretic. The pharmacological actions including anti-inflammatory, antioxidant, cardiotonic and sedative were previously reported. The objective of this study was to (1) isolate and identify bioactive compounds extracted from the ethanolic extract of C. pachystachya roots (ERCP), as well as (2) verify the affinity of these metabolites with the enzymes 5-lipoxygenase (5-LOX) and α-1-antitrypsin through in silico tests. Isolation and/or identification were performed using GC-MS, HPLC, Infrared (IR), and nuclear magnetic resonance (NMR) techniques. After isolation and identification of the active compounds, these substances were subjected to the in silico investigation that proceeded by performing PreADMET simulations and molecular docking calculations. The bioactive compounds identified were 1-(+)-ascorbic acid 2,6-dihexadecanoate, ethyl hexadecanoate, ethyl (9E,12E)-octadec-9,12-dienoate, ethyl (Z)-octadec-9-enoate and ethyl octadecanoate by GC-MS; chlorogenic acid, catechin, epicatechin, syringaldehyde by HPLC; ß-sitosterol, sitostenone, beccaridiol, tormentic acid, lupeol, α- and ß-amyrin by classical chromatography, IR, 1H and 13C NMR techniques. The ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties were determined for each bioactive compound. Tormentic acid demonstrated a greater affinity for 5-LOX enzyme while sitostenone demonstrated a higher affinity for the α-1-antitrypsin enzyme. Our findings demonstrated a diverse range of secondary metabolites isolated from C. pachystachya that showed relevant interactions with the enzymes 5-LOX and α-1-antitrypsin. Thus, "embaúba" may be employed in in vivo experimental studies as a form of alternative treatment for chronic lung diseases.Abbreviations: ADT: Autodock Tools; BBB: Blood-brain barrier; CaCo2: Human colonic adenocarcinoma cells; CC: Classic/open Column; TLC: Thin Layer Chromatography; CD40: Differentiation Cluster 40; CENAUREMN: Centro Nordestino de Aplicação e Uso da Ressonância Magnética Nuclear; GC-MS: Gas Chromatography coupled to mass spectrometry; HPLC: High-Perfomance Liquid Chromatography; CYP2C9, CYP2C19, CYP2D6 and CYP3A4: Cytochrome P450 isoenzymes; COPD: Chronic Obstructive Pulmonary Disease; DRX-500: X-Ray Diffraction - 500; ERCP: Ethanolic extract of the roots of C. pachystachya; FAPEPI: Fundação de Amparo à Pesquisa do Piauí; HIA: Human Intestinal Absorption; IR: Infrared; Ki: Inhibition constant; 5-LOX: 5-Lipoxygenase; mM: miliMolar; nM: nanoMolar; OECD423: acute toxic class method; PDB: Protein Data Bank; P-gP: P-glycoprotein; PM2,5: Small inhalable particles 2,5; PPB: Plasm Protein Binding; PreADMET: Prediction Absorption, Distribution, Metabolization, Excretion and Toxicity; NMR: Nuclear Magnetic Resonance; +S9: with metabolic activation; -S9: no metabolic activation; SisGen: Sistema Nacional de Gestão de Patrimônio Genético e do Conhecimento Tradicional Associado; RT: Retention time; TA100: Ames test with TA100 cells line; TA1535: Ames test with cells of the TA1535 cell line; UESPI: State University of Piauí; V79: lung fibroblast cells; ΔG: Gibbs free energy (Kcal/mol); µM: microMolar.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Cecropia , alfa 1-Antitripsina/metabolismo , Células CACO-2 , Cecropia/química , Humanos , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...